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FOREWORD

"Thermal radiation' is e¢lectromagnetic radiation emitted by matter ina
state of thermal excitation. The energy density of such radiaticn in an en-
closure at constant temperature io given by the well known Planck formula.
The importance of thermal radiation in physical problems increases as the
temperature is raised; at moderate temperatures (say, thousands of degrees
Kelvin) its role is primarily one of transmitting energy, whereas at high
temperatures (say, millions of degrees Kelvin) the energy density of the radi-
ation field itself becomes important as well. If thermal radiation must be
considered explicitly in a problem, the radiative properties of the matter '
must be known. In the simplest order of approximation, it can be assumed
that the matter is in thermodynamic equilibrium '"locally' (a condition called !
local thermodynamic equilibrium, or LTE), and all of the necessary radiative
properties can be defined, at least in principle. Of course whenever thermal
radiation must be considered, the medium which contains it inevitably has
pressure and density gradients and the treatment requires the use of hydro-
dynamics. Hydrodynamics with explicit consideration of thermal radiation is
called '"radiation hydrodynamics''.

In the past twenty years or so, many radiation hydrodynamic problems
involving air have been studied. In this work a great deal of effort has gone
into calculations of the equilibriumn properties of air. Both thermodynamic J
and radiative properties have been calculated, It has been generally believed

g

that the basic theory is well enough understood that such calculations yield
valid results, and the limited experimental checks which are possible seem to
support this hypothesis. The advantage of having sets of tables which are

entirely calculated is evident: the calculated quantities are self-consistent
on the basis of some set of assurnptions, and they can later be improved if
calculational techniques are improved, or if better assumptions can be made.
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The origin of this aet of books was in the decire of a number of persons
interested in the radiation hydrodynamics of air to have a good source of
reliable information on basic air properties. A series of books dealing with
both theoretical and practical aspects was envisaged. As the series materalized,
it was thought appropriate to devote the first three volumes to the equilibrium
properties of air. They are:

The Equilibrium Thermodynamic Properties of Air,
by F. R. Gilmore

The Radiative Pruperties of Heated Air,
by B. H. Armstrong and R, V. Nicholls

Tables of Radiative Properties of Air,

by Lockheed Staff
The first volume contains a set of tubles along with a detailed discussion of the
basic models and techniques used for their computation. Because of the asize of
the related radiative tables and text, two volumes were considered necessary.
The first contains the text, and the second the tables., It is hoped that these
volumes will be widely useful, but because of the emphasis on very high tempera-
tures it is clear that they will be most attractive to those concerned with nuclear
weapons phenomenology, reentry vehicles, etc.

Our understanding of kinetic phenomena, long kncwn to be important and at
present in a state of rapid growth, is not as easy to ansess as are equilibrium
properties. Severe limitations had to be placed on choice of material. One
volume is offered at this tiime:

Excitation and Non Equilibrium Phenomena in Air,
by Landshoff, et al.

It provides material on the more important processes involved in the excitation
of air, criteria for the validity of LTE and special radiative effects.

A discussion of radiation hydrodynamics was felt to be necessary and another
volume was planned to deal with this topic:

Radiation Hydrodynamics of High Temperature Air,
by Landshoff, Hillendahl, et al.

It is not ready for publication at this time. It will review the basic theory of _
radiation hydrodynamics and discuss the application to fireballs in the atmosphere.
The choice cf material for these iast two volumes was made with an eye to

the needs cf the principal users of the other three volumes.
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Most of the work on which these volumes are based was supported by the
United States Government through various agencies of the Defense Department
and the Atomic Energy Commission. The actual preparation of the volumes
was largely supported by the Defense Atomic Support Agency.

We are indebted to many authors and organizations for assistance and we
gratefully acknowledge their ccoperation. We are particularly grateful to the
RAND Corporation for permission to use works of F, R, Gilmore and H. L.
Brode and to the IBM Corporation for permission to use some of the work of
B, H. Armstrong. Most of the other authors are employed by the Lockheed
Missiles and Space Company, in some cases as consultants.

Finally we would like to acknowledge the key role of Dr. R. E, Meyerott

of LMSC in all of this effort, from the initial conception to its realization.

We are particularly grateful to him for his constant advice and encouragement.

Criticism and constructive suggestions are invited from all readers of
these books. We understand th:: much remains to be done in this field, and
we hope that the efforts represented by this work will be a stimulus to its de-

velopment.

The Editors
J. L. Magee

H. Aroeste
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Preface

This volume is concerned with the thermodynamic properties of air
as well as individual air constituents from 1000°K to 107°K for densities
between 10 and J.O'7 times sea level density, It consists of text and
tables which were both prepared by Dr. Forrest R. Gilmore, He is also
the author of a somewhat smaller work (Gilmore, 1955) on the same topic
which has received wide circulation,

The text describes the techniques, models and approximations used
in calculation of the tables. It {s not intended to be a general treatment
of the theory of such calculations which is too well known to need restate-
ment. The reader is expected to have some familiarity with both thermo-
dynamics and statistical mechanics. Discussion of the approximations s
detailed enough so that the accuracy can be readily assessed and improve-
ments can pe readily considered.

The tables can be accepted as an accurate ~ummary of the thermo-
dynamic properties of air and its constituents. They have been compared
with other calculations (which differ in various approximations) and, where
possible, with experiment. Of all inputs for calculations of hydrodynamics
and radiation hydrodynamics, the equilibrium thermodynamic properties are
by far the most reliable. It is unlikely that there will be a significant
improvement of our knowledge in this area in the near future, nor is it needed,
except perhaps at the highest density considered.

Information provided in the tables is much more widely useful than for
air problems alone. It should pe noted that most of the tables are devoted
to the individual air constituents.

The air of this volume is a mixture of about 78% NZ' 21% 02' 1% Ar,

with a trace of CO, . It is essentially the air (t.e., dry air) found in the
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homosphere, or the atmosphere below 95 kilometers altitude. In the

homosphere, mixing processes are rapid, and the composition romalné
essentially con;tant. The local thermodynamic aquilibrium (LTE) approxi-
mation of radiation hydrodynamics is reasonable only in the homosphere.
For convenience of the reader a discussion of properties of the atmosphere
prepared by A. D. Anderson is included as Appendix A.

We would like to thank Dr. Forrest R. Gilmore for his splendid
cooperation and the RAND Corporation for permission to include this work
in our series on "Thermal Radiation." Thanka are also due Mr, A. D.

Anderson for preparation of Appendix A.

J. L. Magee ‘

H. Aroeste
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CHAPTER 1. THE EQUILIBRIUM THERMODYNAMIC PROPERTIES

OF HIGH-TEMPERATURE AIR: DISCUSSION

1.1 Introduction

In order to calculate the behavior of nuclear fireballs and of
hypersonic missiles and meteorites, one needs values for the thermo-
dynamic properties of air over a wide range of temperatures and pressures
or densities., At temperatures above about 2000°K there are great experi-
mental difficulties in measuring these properties directly, while it is
generally accepted that careful theoretical calculations can yield results
of high accuracy. Consequently, in this chapter the methods and data
available for the theoretical computation of such properties are outlined,
and published results reviewed briefly. Some improvements over existing
treatments are also indicated. Extensive tables based on these improved
expressions are given ln_Chapter 2.

Throughout this chapter the assumption of local thermodynamic
equilibrium (LTE) is made. In some situations of interest, such as fire-
balls or missile trails at very high altitudes, this assumption is not valid,
and the results given in this chapter are not applicable. In such non-
equilibrium situations the thermodynamic properties of air depend upon

the énerqy deposition mechanisms and the subsequent atomic and molecular

processes, as discussed in a companion volume of Thermal Radiation

Phenomena, Excitation and Non-equilibrium Phenomena in Air.
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1.2 Air as a mixture of ideel gases in chemical equilibrium
The thermodynamlc properties of most gases at low and moderate
densities can be approximated Gver a certain temperature range by &

thermal equation of state of the form

FV = NRT (1.2-1)
and a galoric equation of state of the form

L = NC.T, (1.2-2)

where p is the pressure, V the volume, N the number of moles, R

the gas constant per moie, T the temperature, E the internal energy,

and Cv the {(constant) molal specific heat at constant volume. A gas which
satisfles Eq. (1.2-1) and Eq. {1.2-2} is called a perfect gas. Many gases
satisfy Eq. (1.2-1) over a fairly wide range of temperatures, but £q. (1.2-2)
only over a much narrower range. Consequently, the definition of a perfect

gas is sometimes modified to include gases which obey Eq. (1.2-1) but not

Eg. (1.2-2). However, to avoid ambiguity it seems preferable to follow thermo-

chemical practice, aud use the phrase ideal gas tc denote a gas which is

thermally perfect but has an internal energy varying arbitrarily with the temperature. -

Ideal-gas thermodynamic properties fcr many pure elements and
compounds have beer. calculated and tabulated by various workers. The

most extensive and accurate set of such tables was racently issued by




a Joint Army-Navy-Air Force (JANAF) Thermochemical Panel in loose leaf
form (JANAF Thermochemical Tables, 1960), with revisions issued
periodically. These tables include values for most air molecules to
COOO°K. Methods for making such calculations at still higher temperatures
will be discussed in later sections of this chapter.

Afr is a mixture of nitrogen and oxygen, with small amounts of argon,
carbon dioxide, and raie gases, and a variable amount of water vapor.

At low and moderate d2nsities its thermodynamic properties may be obtained
simply by adding the ideal-gas contributions from its components. This is
straighttorward at low temperatures, where the composition does not change.
At high temperatures, however, dissociation and other chemical reactions
cause the composition to vary with temperature and pressure. Because of
this variation the product pV for the mixture is no longer proportional

to T , even though each component is effectively ideal. Consequently,
derodynamicists often call air at high temperatures a "real gas, " although
thermochemists prefer to reserve this term for high densities where inter-
molecular forces cause deviations from ideal-gas behavior.

The first step in calculating the thermodynamic properties of high-
temperature air is usually to calculate the equilibrium chemical composition.
The basic condition for chemical equilibrium {Epstein, 1537) is that at a
fixed temperature and pressure the amounts or concentrations of the various

chemical species must be such as to minimize the Gibbg free energy of

the mixture, subject to conservation of the chemical elements in the mixture. .

If the temperature is high enough to produce significant ionization, electrons
and ions must be included among the specles, and charge must also be

conserved.
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The Gibbs free energy of an ideal-gas mixture is given by

o] .
Fie ® 2, N (FO+RTInp) (1.2-3)
i

whers N1 is the number of moles of the i-th species, F® is the ideal-

i
gas molal free energy of this species (at the temperature T and one
atmosphere pressure), and Py 1s its partial pressure (in atmospheres).
White, Johnson, and Dantzig (1958) have developed numerical methods

for minimizing Eq. (1.2-3) while keeping the temperature and the total
pressure fixed and conserving mass. Their methodt are convenient for
calculating equilibrium compositions at specified temperatures and pressures.
For fireball applications it is preferable to make computations at spect’é‘ie«j
temperatures and volumes (or densities), because the air density within a
fireball varies by two or three orders of magnitude at most, while the
pressure variation can be several more orders of magnitude. A convenient

procedure for such computations can be based on the thermodynamic principle

of minimizing the Helmholz free energy (or work function)

= - = o - -
Aot = Fiop - PV = D Ny [F - RT +RT In (NRTA)] | (1.2-4)
i

at a fixed temperature and volume (Epstein, 1937). Since Eq. (1.2-4) has
nearly the same form as Eq. (1.2-3), the procedures of White, Johnson and
Dantzig (1958) can be used with only minor modification,

For systems invoiving a limited number of reactions, or for more

complex systems if a high-speed computer is not available, a computation




method based on “equilibrium constants” may be more convenient. To
derive the necessary equations from the free-energy minimigation pﬂnciplo.
consider the effact of small changes le in the amounts of the chemical
species, while the temperature and (total) pressure are held fixed. By
the use of Eq. (1+2-3) and the relation P = le/;: N, . the variation

in free snergy at constant p may be expressed as

o -
8F i =D (F] + RT In p) BN, + 3 NjRT 8(in Ny -D_NRT 8nY N). (1.2-5)
N 1 T

Since & Iln x= 8x/x , the last two terms on the right hand side of

Eq. (1.2-5) cancel and the final result becomes

o -
8Fyo -2 (FC + RT In p) SN, . (1.2-6)
1

In equilibrium the free energy has a minimum, so 6Ft0t = 0 and

from Eq. (1.2-6)

E:em1 Inp, = - Z 5N, (F/RT) (1.2-7)
7 N

for all sets of E)N1 which satisfy the mass-balance constraints. One
way of satisfying these constraints is to consider possibie chemical

reactions, such as

XYsx+y. (1.2-8)
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A composition variation due only to this reaction has bny = - 6Nx =-8N.

with all other &N, vanishing. Eq. (1.2-7) then gives

Fo.-F0-F°
InpPyy -Ilnpy-lnpy = - “RT

Taking the exponential of this equation, one obtains

P Fo,-F2-F
EEL o gp | WX
x Py

The right hand side of Eq. (1.2-10) is independent of the composition

and pressure of the mixture (although it does vary with temperature); it is

Y

(1.2-9)

(1.2-10)

conventionally called the gguilibriym consgtant, Kp , of reaction Eq. (1.2-8).

With the help of the ideal-gas relation, p, = NtRT/V = NIRT , where 'N1

is the concentration (moles per unit volume) of the species 1 , Eq. (1.2-10)

may be transformed to

N Fo, - F2 - F®
ﬁ;{%\}- RT exp -_ﬂ__-x__Y-RT .

(In Eq. (1.2-11) the F? are conventionally evaluated at 1 atmosphere

pressure; hence, the units of RT must be atm-volume/mole.) The right

(1.2-11)

hand side of Eq. (1.2-11) may be called the concentration equilibrium constant

Kn , for reaction Eq. (1.2-8).

If there are I chemical species present in a reacting mixture and ]

mass-balance conditions to be satisfied (one for each element present, plus

one for charge reutrality if ions are present), it turns out that 1-]

independent equilibrium equations of the form Eq. (1.2-10) or Eq. (1.2-11)
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can be found, and thus there are just snough equations to determine the .
I partial pressures or concentrutions uniquely. The set of equations
used, however, is not unique, since, for example, the sum or difference
of two reactions is also a permissible reaction; its equilibrium constent
{8 just the product or quotient of the constants for the two reactionas. Any
convenient complete set of equations can be used to get the equilibrium
composition.

Unless only two or three reactions are involved, a closed-form
solution to the equilibrium equations is usually not obtainable, and
numerical iteration schemes must be used. An important exception occurs
however, when only atoms, atomic ions, and electrons are involved.

The equilibrium ionization equations for sach element X can be written

Nye = Ko N My 0 Nppy = Koy B/Re 0 Ry = K, B/Ry 4ol (102-12)

*
where Ne is the electron concentration. The sum of these concentrations,
plus N‘x , 1s the total concentration of the element X , Ntot x + Which

is usually specified. The summed equations can be readily solved for Nx:

N
N, = tot.X 5 . (1.2-13
1+ Ky /N + K N+ .0

If the negative ion X  1s stable, an additional equation for its
concentration must be included in Eq. (1.2-12), and corresponding
additional terms added to subsequent equations, but this does not
complicate the analysis significantly.
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M the elements X , Y , ... are present, the charge-balance relation is

R " N v 2Ry +3Ry o Ry +2R  #3R, 4o L (12-14)

With the help of Eqs. (1.2-12), (1.2-13), and similer relations for Y ,
stc., B8q. (1.2-14) can be written

w R R o+ax,  /Ri+..) . Not ™ ’N +25{**/“2|+"')+
RS W, JE SV LI 14 Ky /R + K /R4,

(1.2-15)

In & specified-density problem the total concantration of each element is
known, and Bg. (1.2-15) can in principle be solved for N. ., although
analytic solutions are possible only when the number of different ions present
is small. However, if the elemental composition (hence, the ratios
Ntot.‘l/“tot.x . etc.) and the electron concentration Ne are taken as
independent variables, Eq. (1.2-15) can be solved directly for Ntot.x .
and then the other concentrations can be obtained from Eq. (1.2-12), etc.,
all without ltcratlon..

Although a solution of Eq. (1.2-15) at a specified density (t.e., specified

slues of Ntot.x , Ntot.‘[ ., atc.) usually requires an iteration process, it
a particularly simple one, involving only the variable Ne « A numerical

studv by the writer shows that a scheme using the total atom concentration

as *he first approximation to Ne . and obtaining successively better values

This fact has been discovered, apparently independently, by a number
of different workers. The earliest publication known to the writer is
that of Hilsenrath, Green, and Beckett (1959).




by substituting the previous value in the right hand side of Bq. (1.2~15),
converges quite rapidly when the second approximate N. is larger |
than about half the atom concentration. For smaller N. values,
rapid convergence can be obtained by using for sach new approximation !
the geometric mean batween the previous approximation and the value |
obtained from Eq. (1.2-15).

Once the equilibrium composition of a reacting gas mixturs such
as high-temperature air iz obtained by the free-snergy-minimigation or
equilibrium~constant methods described above, the basic thermodynamic
properties may be obtained simply by adding the ideal-gas contributions
from the various constituents. The ideul-gas entropies and free energles
are conventionally tabulated for 1 atmosphere pressure, and must be
corrected to the actual partial pressure of each species, as earlier i
indicated for the free energy (see Eq. {1.2-3)).

Calculations for “differential” thermodynamic functions, such
as the specific heat, are lass stralghtforward. A specific heat computed
by averaging the specific heats of the component species, weighted
according to their equilibrium concentrations at a given temperature and
density, is a "frozen composition" specific heat, useful only in situations
where the temperature is varied so rapidly that chemical reactions do not
have time to take place. In the usual true-equilibrium situation, however,
the variation of composition with temperature gives an additional contribu-

tion to the specific heat. Hochstim (1962) has presented rather lengthy

o e -

equations for the specific heat and related quantities in terms of the

equiiibrium constants and their temperature derivatives, and shown how




they can be solved for air using a high-spaed computer. In most cases,
however, it is probably simplar to calculate the energy at two or three
closely-spaced points and obtain tha specific heat by numerical
differentiation. Morsover, in many fireball calculations the energy

and pressure of air are approximated by analytic functions of temperature
and density. Differentiation of these functions gives approximate
values for the specific heat, velocity of sound, etc., rather

simply,

The equilibrium compositions obtained in the course of calculating
thermodynamic properties are also useful in determining radiation properties
(see Volume 2) and transport properties (viscosity, electrical conductivity,
etc,) of air. For these purposes it is often more convenient to express
lpe;:lu concentrations in terms of molecules (atoms, ions) per unit volume.
Since tharmochemical tables are usually based on the gram mole, the
equations in this chapter are given in molal form, but they are equally valid
if concentrations are expressed in molecules (or particles) per unit volume,
while volumes, energies, etc., are taken per molacule instead of per

mole and the gas constant per meie, R , 1is replaced by the gas constant

per molecule, k (Boltzmann's constant).

1.3 Ideal-gas properties for monatomic gases

As will be shown below, the thermodynamic properties of monatomic
gases depend in part on the quantum-mechanical properties of their
constituent atoms. It is beyond the scope of this chapter to explain the

quantum mechanics of atomic structure (for a good introduction, see

10
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Herzberg, 1944). However, in the next few paragraphs, enough of the

terminology will be explained to permit the reader to use existing energy-

level tables to calculate thermodynamic properties. |
An atom or atomic ion may exist in many different states with different

energies, corresponding to different arrangements of the orbital electrons.

According to quantum~-mechanical principles for light atoms (Russell-Saunders couping,

Herzberg, 1944), the states are grouped in tarma. where for each term the

total orbital angular momentum (in atomic units) of the electrons must be

an integer. The tsrms are designated, for historical reasons, by the

letters S,P,D,F,G,H, ..., corresponding to total orbital angular

momenta, L ,equalto0,1,2,3,4,5, ..., respectively, In

addition, each electron possesses a gpjn (intrinsic angular momentum) of

1/2 , and these spins add algebraically to give a total spin 8 . The

quantity 28+ 1 {s called the multiplicity of the term; it is conventionally , ‘
writton as a superscript. Thus atermwith L=2 and §=3/2 is .
denoted by 4D . Agiven atom or ion may hava mzay terms of the same ‘
type, with the same L and § values, but diffaring in the arrangement
of the individual electrona, and thus in the energy.

Aterm having S<L 1is composed of 28+ 1 Javals, having total
angular momenta J=L+ S, L+8-1,L+8-2, ¢«ev, L= 8§, respectively,
all with energles fairly close to each other. (If L< 8 , the quantities L '
and S should be interchanged in the preceding statement). Thus, a 4D v
state 1s composed of four levels designated by subscripting their J values:

497/2 , 495/2 , 4D3/2 , 401/2 . By placing the atom in a magnetic

field, each of these levels can be split further, into 2]+ 1 individual

o O
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sublevels. Quantum theory shows that there are just this many distinct
"quantum states” {n such an electronic levei; in the absence of a magnetic
or eleotric fleld their energies are the same, so that they can be treated
as a single level with a "degeneracy” or gtatistical waight of 2J+ 1,
Often, the splitting of an L , 8 atate into levels with diftorent J
values can also be ignored, and it can be treated as a single level
with a statistical weight of (21, + 1) (28+ 1) . Thus, a D state
has a statistical weight of 20; its four levels (“D7 /2 ‘Ds /2" 4D3 /2
‘Dl /2) have statistical weights of 8 , 6 , 4 , and 2 , respectively.
Except for one-electron atoms and ions, accurate calculations of
energy levels are difficult, while very accurate measurements by
spectrography are usually relatively simple. 8ince spectroscopists
measure wavelengths, which by Planck's law are inversely proportional
to the energy level differences, they conventionally present energy levels
in units of cm'l. To convert to true snergy units, these must be multiplied
by hc , where h 1is Planck's constant and c¢ is the velocity of light.
Moore (1949) has collected together the best experimental energy-
leve! values for the light elements and ions; her tables sre complete enough
for many practical purposes. If necessary, Moora's valuss can be tested
for complsteness by comparison with the tables of predicted terms given
in the front of the same volume, and missing values estimated by using
various semiempirical methods (isoelectronic extrapolation, quantum
defects, screening constants (Herzberg, 1944; Edlen, 1964)). For the
highly ionized species, for which experimental data are incomplete, Edlen

(1964) gives a number of useful extrapolation formulas and tablas.

12




Fig. l.1 depicts, as an example, the energy levels of the nitrogen .

atom. Since, there are many terms with the same L and 8 values,

the terms are also marked with the quantum numbers of the individual

electrons. Thus,

is 2p4 indicates one electron with principal quantum

number n = 2 and orbital angular momentum £ =0 , and four electrons

with n=2 and 4= 1 . Although not marked, all of the states shown

have two inner, tightly bound electrons,

lsz

.
4

atates without these

electrons lie 80 high in energy that they can be completely ignored for

presant purposes.

According to statistical mechanics (Mayer and Mayer, 1940), ir: an

ideal gas in equilibrium, the fraction of an atomic or ionic species which

is in a particular electronic state or level

J

is

N/N- (gj/Q) exp (-th'j/kT) .

where qj is the statistical weight of the level, B', is its energy

(in em™ 1), and Q is a proportionality constant called the partition

function. The fraction N’/N is also called the "fractional population®

or “occupation number." When Eq. (1.3-1) s summed over all |

values,

the left.hand side reduces to unity and the equation can be solved for the

partition function:

Q= Z gj exp (-czs'j/'l') ¢

!
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where cy is known ar the secord radiation constant,

c, ™ he/k = 1,43879 cem-% (1.3-3)

The values quoted in this chapter for the pertinent physical constants
are those recently recommended by the National Academy of Sciences -
National Research Council (1964); they differ slightly from thosa used in
previous work.

The electronic-energy contribution of the atoms in state J to
the internal energy of the gas is Nj G hcE' g where C is the number
of atoms per mole (Avogadro's number). Since & = R/k, this contribution
can also be written NchZB' 'K The ideal-gas internal energy per mole
can then be obtained by using Eq. (1.3-1) to evaluate Nj , summing the
contributions over j , and adding (3/2)RT for the contribution from the

translational motion of the atoms. The result may be written in dimensionless

form:

-E
—_RT‘—Q = % + E}T- Z:czfz'j exp (-czB' j/'1‘) . (1.3-4)
i

where the superscript o indicates the ideal-gas state, the subscript

0 indicates 0°K , and

R=8.3143 x 10’ erg/°k-mole = 1.98717 cal/k-mole . (1.3-5)

i4




Eg in Eq. (1.3-4) represents the internal energy of the ideal gas at

0%k ; its numerical value is somewhat arbitrary, since in thermodynamics
only energy differences can be measured. Howevar, in reacting gases,
consistent cholces must be made, so that the differences in Bg values
betweon the reactants and the products gives the correct reaction energy
(at absolute zero). For example, if Eg is taken to be zero for riomic N,
the corresponding quantity for N+ must equal the ionization energy of N,
while that for N2 must be the negative of the dissociation energy. In
thermochemistry it is conventional to choose Eg = 0 for the elements in
the phases that are stable at room temperatire and pressure. For air -
(including carbon dioxide) these are gaseous N2 ' 02 , and Ar

and crystalline graphite. The use of graphite as a reference material

has the disadvantage that it makes the internal erergy of gaseous 002
negative, and this causes the calculated energies for air near room
temperature to deviate appreciably from direct proportionality to the
temperature. To prevent this behavior, Eg for gaseous CO, (as

well as gaseous N2 . 02 . and Ar) has been set equal to zero in the
present work.

The corresponding values of Bg for the atomic species of present

interest ai: given in the first table of the second chapter, toge..aer
with the dissociation and ionization energies from which they were derived,
and the corresponding references. An effort was made to obtain the best
values presently available, since results of thermodynamic calculations

are usually more sensitive to inaccuracies in these values than to any

other inaccuracies.
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The idoal-gns sntropy (at one atmosphere pressurs) can be obtained,
except for a constent term, from the thermodynamic relation §= jdH/’r
(p constent), where H=E+RT oand E s given by Eq. (1.3-4). The

result can be written
$°/R= (E°-EQ/RT + in Q + % InT+C, (1.3-6)

where statistical mechanics (Mayer and Mayer, 1940) shows that the

integration constant is
Ky 2 3
C= 1+ Ink/p) + % In(2rM k/Ch®) = % In M - 2.66496 , (1.3-7)

with p°- 1 atmosphere and M the atomic weight. Other ideal-gas
thermodynamic properties can be obtained from Eq. (1.3-4) and Eq. (1.3-6)
using wall-known thermodynamic identitias. For example, the dimensionless

Gibbs free energy is given by

FP-E) g EXE] s 3
-———QRT =% - R " 1*IhQ+3InT+3 InM-3.66496 . (1.3-8)

Substitution of this expression in Eq. (1.2-11) gives an equation for the

equilibrium constant in terms of the partition functions of the reactants:

3/2

2 o o o
N @h MEB Q!B E (AB)~E-(A)-E,(B)
Nﬁ =Q\ s, M Q,Q, %P |~ 2 R%- L (1.3-9)
AVB AB A¥B

16




When A represents a positive fon, B an electron (with Q™ 2), and
AB a neutral atom, Eq. (1.3-9) yields the familiar S8aha equation for
equilibrium fonigation.

In calculating ideal-gas functions by the above equations, however,
there is a basic difficulty not mentioned in elementary texts. An isolated
atom or positive ion (in an unlimited volume) actually has an infinite
number of stable elcctronic states with energles Bj less than its
fonization energy, and thus the sums in Eq. (1.3-2) and Eq. (1.3-4) diverge.
However, at temperatures up to several thousand degrees the series are
semi-convergent in the sense that essentially the same answer is obtained
by taking the first ten or the first ten thousand terms. The omission
of the infinite "tail” of the series, whicn contains terms corresponding
to electrons in highly~excited levels, is justified because in actual
situations no atom can occupy an unlimited volume, since it is limited
at least to the volume of the system, and generally, in systems containing
many atoms, to a much smaller volume, comparable to the mean volume per
atom (see Section 1.7).

At somewhat higher temperatures the difficulty is less trivial,
because there may be no point at which the terms in the sum become
small, and thus the answer may depend significantly upon where the
series 1s broken off. This is illustrated in Fig. 1.2, which shows the
percentage increase in internal energy and free energy as the cutoff point
is raised from an electron quantum numberof n=4 to n= 8. Various
workers have suggested simple cutoffs which depend upon the atom density,

the electron density, or the temperature., However, none of these simple
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one-parameter relations can be compietely correct, because the high
slectronic levels are affected both by close-in neutral particles and,

to a greater extent, by close-in charged particles, while the temperature
influences how often these particles come close-in., The true cutoff is
thus a function of the composition, density, and temperature, sc that if
the sums in Eqs. (1.3-2) and (1.3~4) are sensitive to the cutoff the "ideal-
gas” functions also depend upon the compositicn and density as wel! as
temperature, which greatly complicates thermodynamic calculations.
Moreover, the higher bound levels below the cutoff may be perturbed
sufficiently to further affect the thermodynamic properties.

As shown by Fig. 1.2, at successively higher stages of ionization
an atom’s properties remain independent of the cutoff to successively
higher temperatures. In air below standard (sea level) density, as the
temperature is raised to the point where the cutoff for any particular fon
becomes tmportant the concentration of that jon becomes so small (due
to further ionization) that the choice of cutoff has little effect on the
thermodynamic properties of the equilibrium mixture. Unfortunately,
this simplification does not hold for the highest air densities of present
interest (up to 10 times the standard density, as produced by a strong
shock wave at low altitudes). Even at such densities, however, electronic
states with n s 4 should be little affected by neighboring atoms, since
the electronic orbits of such states lie well within the mean interatomic
or interionic distance. Thus, thermodynamic functions calculated by
summing up to n =4 represent lower limits to the true values. In

addition, they usually represent useful approximations to the actual
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values, since at high densities the correct cutoff is not much greater than
4 (see Section 1.7), while at low densities the equilibrium properties are
relatively insensitive to the cutoff, as already pointed out.

If better, variable~cutoff thermodynamic properties are required they
may be obtained by adding the contributions from states between n=§
and the cutoff n, . For light atoms and ions, the must important of such
states are those having only one electron with n> 4 , such states with
one slectron outside a "core” are quite hydrogen-like, with a statistical

2 times that of the core (with the outer electron re-

weight equal to 2n
moved), and an energy just Ry (Z+ l)z/n2 less than the energy of the
core, where Ry is the Rydberg (109,737 cm™ e 13.605 eV), and 2Z is the
charge of the atom or ion. The partition-function summation, Eq. (1.3-2),
over these states can then be factored into a sum over the states of the

outer electron and a sum over the states of the core. The final result is

n
< %
Q00 = Gy 00+ Qpeg &) 0 (- 1) Y an o (sug—u—) (1.3-10)

n kT
n=5

where Q . 4(x+) is the partition function for the next higher ion and

IX) is the X- x*  lonization energy. Since the cutoff n c deperids upon
temperature, density, and somewhat on composition (see Section 1.7), it is
more convenient to calculate the correction term on the right hand side of

Eq. (1.3-10) during the course of an equilibrium ionization calculation than
to tabulate the "true" ideal-gas thermodynamic properties of each species

as functions of two or three variables.
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Accordingly, ideal gas functions for the atoms andionsof C , N ,
O, and Ar have been calculated for temperatures of present interesf
using a fixed cuéoff just above n= 4 . Extensive numerical results are
presented in Chapter 2. Tables showing the energy-level data used,
and the fractional population of each electronic state versus temperature
are also included. The thermodynamic results have been compared with
results of several previous workers (JANAF Thermochemical Takles, 1960;
Gilmore, 1955; Woolley, 1957; Kilsk’, Gilmer, and Gilles, 1957;

Green, Poland, and Margrave, 1960; Yungman et gal., 1961; Martinez, 1961;
Gurvich et al., 1962; McBride ot gl.. 1963; Hilsenrath, Messina, and
Evans, . i4). Up to 10,000°K, almost all tha results agres to within 0.03
per cent. Moreover, the small differences are due primarily to use of
diiferent values for the gas constant R ; if this is corrected for, the
deviations are generally reduced to less than 0.01 per cent. An exception

is the tabia for ™ by Hilsenrath, Messina, and Evans (1964), which gives
values deviating from other work by up to 2 per cent (their values for the
other air atoms and ions show no such deviation).

Only a fev uples extending above 10.00D°K have besen published
previously, and these show increasing variations in the results for the
neutral atoms, depending upon the elactronic cutoff used by the different
investigators.{ Variations fcr the fons appear only at considerably higher
temperatures, as shown by Fig. 1.2.) The earlier work by the writer (Gilmore,
1855) up to 2&.000°K used a cutoff around n= S but omitted some states.
Up to 12,000°K those resuits agree very well with the prasent results, but
differ by up to 6 per cent for the neutral atoms at 24,000°K. The values of
Woolley (1957) to 4,000,000°K and the extensive Russian tables (Yungman et al.,
1961; Gurvich et al., 1962) to 20,000°K also show deviations above 10,000°K.

Woolley (1957) used a somewhat different type of cutoff that excludes many
20




states included in the present work (planning to include them in subsequent
equilibrium calculations). Hence, his values for the enthalpy, antropy,
and negative frae energy are generally lower than the present values; for
the neutral atoms the differencs is a few per cent or less at 20,000°K.

On the other hand, the Russian values aro generally higher because they
used cutoffs at n= 11 - 13 , based on restricting the electrons to the
mean volume per atom at densities corresponding to a pressure of one
atmosphere. At 20,000°K their enthalpy values for the neutral atoms

are almost a factor of two higher than the present values, although their
entropies and free energies are only a few per cent higher. Whether such

differences are significant in equilibrium thermodynamic calculations

depends upon the density under consideration and also upon whether separate

allowance for the highly excited states is made i the equilibrium computa-

tion, as already discussed (see also Section 1,7).

l.4 Ideal-gas properties for diatomic gases

The relations Eqs. (1.3-4) and (1.3-6) for the energy and entropy of
a monatomic gas apply equally well to a molecular gas, provided that the
summations are extended over all the molecular energy levels, which can
differ .not only in electronic energy but also in rotational and vibrational
energy. Because of these additional degrees of freedom, the individual
lavels of a molecule are so numerous that it is rather impractical to
tabulate all of them. Fortunately, however, for each degree of electronic
excitation the rotational and vibrational levels are usually quite regular

and can be represented by simple formulas, only the coefficients of which
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need to be tabulated. Moreover, using these formulas, the terms of the
series in Bqs. (1.3-2), (1.3-4) and (1.3-6) can often be summed
algebraically with reasonable accucacy, at least in some temperature ranges.
The energy lavels ¢t molacules can be grouped into glectronic gtates,
each of which is characterizedu {in part) by the total spin 8 of the
eleatrons. Mux as for oioms, tha multiplicity 28+ 1 , s written as a
superscript on the left of the state symbol, Unlike the atoms, however,
diatomic molecules have an intornuclear axis, and the second important
quantum number is not the total orbital angular momentum, L , of the
slectrons, but the component , A , of this momentum in the axial direction.
In analogy with the Ruman-letter designations of atomic terms, dtatomic
states are designated by the Greek letters L ,II , A, ¢, ..., corresponding
to A=0,1,2,3, ....Because in diatomic molecules terms of a given
L are separated into states of different A , the statistical weights of
these atates are generally less than those of the corresponding atomic
terms; specifically, the weights are 28 + 1 for I states and 2(28 + 1)
for 1,4 ,4, ..., states. Stateswith S>0 and A >0 split
into 28 + 1 substates, designated by writing the vector sum of A
and the axial component of S8 as a subscript. However, this splitting
can often be ignored, since it is usually small and often associ ated only
with higher excited states. Other subscripts and superscri pts are some-
ti mes added to the state symbol to indicate the electronic symmetry, but

this does not aff ect the present considerations.
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8ince a di atomic molecule may have more than one state with
the same 8 and A values, and also since there may be a considerable
period between the axperimental diacovery of ¢ state and the dutermination
of its type, the states are also labelled somewhat arbitrarily by Romen
letters, with X designating the ground st~te¢, and A, B, ©, ... the
succeasively higher (or earlier discovered) states of the same multiplicity
as the ground state, while a, b, c, ... designate states of a different
multipli city. (Exceptions sre the N, and C, moiecules, where
the capital and lower case letters are reversad, due to early misidentifi ca=-
tion of the ground state.)

The electronic energy of 8 diatomic molecule depends not only upon
the electronic state but also upon the interatomic (or, more accuratsly,
internuclear) distances. Curves showing this vari ation for N2 and N;
are presented in Fig. l.3. At large internuclear distances the energy must
be that of two individual atoms. At distances approaching gero the anergy
must approach infinity because of the strong Coulomb (electrostatic)
repulsion between the two nuclei. At intermediate distances the curve
must have a minimum if the molecular sta'e is to be stable. The two nuclet
will tend to approach this minimum-energy distance, but may vibrate about
this point. Since the vibrational motion of the nuclei is much slower than
the orbital moti ons of the lighter electrons, the slectrons will ke¢p adjusted
to te instantaneous position of the nuclei. Thus, the electronic energy
will follow the same curve regardless of the amplitude of vibration, and

such a curve forms an effective potential for molecular vibration.
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The lower portion of an attractive potential curve (ses Fig, 1.3)
can often be approximated by a parabola. Quantum theory (Herezberg, 1950)
shows that the vibrational energy in a parabolic potential equals w(v + 1/2),
where @ is a constant which depends inversely upon the width of the
parabola, Vv is the vibrational quantum number, which can take on the
values 0, 1, 2, ..., and the zero of energy is measured from the bottom
of the parabola. Actual potential curves, however, diverge ﬁoro and more
from a parabola at higher energies; therefore the vibrational energy levels,
instead of being ¢venly spaced as in the above formula, fall closer and

closer together as the dissociation limit is approached. It is conventional
to fit these levels by the formula

G(v) = w (v+1/2) -wx(v+ 1/2)2+w.y.(v4 vads ...,
(1.4-1)
where W « WX+ WYy etc., are constants dctorn;inod spectroacopically,
and the subscripted e indicates that this is an expansion about the
equilibrium point (potential curve minimum). The short numbered lines on
the potential curves of Fig. 1.3 indicate t he obsarved vibrational energy levels
of these molecules.

Besides vibrating, a molecule can also rotate. The simplest approxi-
mation is that of a "rigid rotator, " whose quantum-mechanical energy lsvels
(Herzberq, 1950)are given by BJ(J+1), where B iz a constant inversely
proportional to the squeare of the internuclear distance, and the rotational
quantum number ] egquals 0, 1, 2, ... 8ince actual molecules are

not rigid, but stretch as they rotate so that the effective value of B
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decreaseas with increasing ] , a negative correction tesrm proportional
to Iz(J + 1)2 is conventionally added to the energy expression. Moreover,
if the molecule is also vibrating, this affects the mean internuclear
distance and gives a B value which depends somewhat on the vibrational
quantum number.

By adding the contributions of electronic, vibrational, and rota-
tional energy one obtains the following general formula for the molecular

energy levels (term values):

AL

A (v =00+ u (172 - wx (1/202 4wy e1/2) 3

(14-2)
+ oo+ BI040 =D sigent e H Pt L,

where

B, = B.-ae(w1/2)+ya(v+l/2)2+...,

= /
Dv De+a°(w1/2)+..0'

Hv- He+6e(v+l/2)+... '

and ‘7 : is the electronic energy at the equilibrium distance, taking the
zero of ensrgy to be the lowest lavel (v = 0, J = 0) of the ground state. (The -
asterisk is added to distinguish this quantity from the conventional jj e '
the energy above the potential minimum of the ground state.) In Eq. (1.4-2)

some generally-riagligible terms due to the interaction of the elesctronic and
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votational angular momenta have bee:. omitted.

The statistical weight of sach level is just the electronic statistical
weight already discussed, multiplied by 2Y+ 1 for most molecules.
Howsver, if the molecule is homonuclear (like N, . N; , etc,) the 2]+ 1
i3 replaced by a rapidly-oscillating function of J , which for present
purposes can be approximated by its mean value, (2J+ 1)/2 .

8iace each electronic state has only a finite number of hound
rotational-vibrational levels, * the summations required for thermodynamic
calculations can be carried out without any further convergence difficulties.
Howeve:, at temperatures cf a faw thousand degrees, many hundreds of
terms make significant contributions to the sums, so that hand computations
becqme lengthy. For this reason, Mayer and Mayer {1940) have worked
out approximate algebraic formulas for thase sums, based on replacing the
summation over rotational leveis by an integration, ahd neglecting or
approximating the higher correction terms in the energy~level formulas.,
However, some of these approximations become poor at very high temperatures.
Moreover, with modern high-speed computers it is virtually as easy to perform
the summation directly.

At temperatures above 5000°K or 6000°K, vibration-rotation energy
levels of the lower electronic states near their dissociation limits can
make significant coentributions to the thermodynamic properties, Unfortunately,
spectroscopic measurements on such levels have rn>t been made for most
electronic states of intersst. For the few states for which they are
availablc, it 1s found that a large number of terms must be included in
Eq. (1.4-2) in order to fat the data. This indicates that the usual measure-

ments on only the lowe- levels of an electronic state cannot be safely

Neglecting & few highly-excited stutes which dissociate to positive
plus negative atomic ions. 26
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extrapolated to get the very high levels. However, these levels are
determined by the high portions of the corresponding potential curve.
It is often possible to determine this curve with some confidence, by
use of Rydberg-Klein and valence-bond calculations (Vanderslice,
Mason, and Lippincott, 1959; Gilmore, 1965). The energy levels
corresponding to this curve can then be calculated quantum-
mechanically.

For present purposes, however, it is possible to bypass this last
step, and calculate the contributions of the high levels to the thermodynamic
properties directly from the potential curve. At temperatures where these
levels contribute significantly, their spacing ig small compared to kT, so
that the formulas of classical statistical mechanics can be used. These
formulas show that the partition function for structureiess particles of mass
m with total energies between Bl and Ez . in a volume dV where

the potential is U , is given by(Mayer and Mayer,1940):

E
Eiﬂ?,;ﬁdl r(z-wl/ 2 oxp (-E/KT) dE
E, (1.4-3)
(E,-U)/AT
Zn(kaTf/ 24y o~ WKT [[g_ orf x22 . 1/2 e-x] .
h (E,-U)AT

where erf 1is the error function. The partition fuaction contribution from
diatomic energy levels between El and the dissociation energy D can
be obtained by multiplying the above expression by the electronic statistical

weight g  , letting m be the rediced mass, MIMZ/(M1+M2)Q,
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where Ml and Mz are the atomic weights of the two atoms, replacing

dv by hrzdr .whers r 15 the internuclear distance, and integrating

over r . The resultis

Brrz(ka'l')a/zq “ 2 j 2 .
Q(El toD) = 3 j fD(r)r dr - tl(r)r dr| , (1.4-4)
h To n
{
|
where
/2 _ /2 _
£(r) = ,LE_ ers{ld o~ UKT _ U o~ D/KT ,

fl(r) is the same function except that D 1is replaced by E, , 1, 1s
the point on the inner branch of the potential curve where U(r) = D , and
r, and r, are the two points where Ufr) = E, . A similar but slightly

longer expression can be derived for the summation appéarlng in Eq. (1.3-4). 3

The above approach omits the quasistable rotational levels above ]
the dissociation energy (Herzberg, 1950), which scme investigators include.
However, such levels are more conveniently treated as two separate atoms
subject to an interatomic attraciion (see Section 1.6 ). Moreover, there
is little point in including bound levels near or above the dissociation
energy unless the unbound or "repulsive" states or levels of similar energy
.;.md internuclear distance are also included, since the two types make
comparable contributions to the equilibrium thermodynamic properties.

Inclusion of the latter type, however, requires a departure from the ideal-

gas approximation.
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To check the accuracy of the above relations, partition funcuon.

and energy calculations for several of the states of N, , NO , and O,
were made using the direct summation method up to 1/3 , 1/2 , and 2/3
of the dissociation energy, respectively, and the clagsical intagrals
beyond these eanergies. The results using the three different crossover
points were virtually identical up to several thousand degrees, and agreed
within 0.5 per cent for the entire range from 1000 to 40,000°K.

The total partition function and energy of diatomic moiecules may
be obtained by adding such contributions from all the electronic states.
Of course, just as for atoms, isolated mclecules have an infinite number
of high-excited electronic states, while at finite densities these are
*cut off™ in some complicated fashion by electron-ion interactions.
However, for most molecules such states lle considerably above the
dissociation energy, so the molecules tend to dissoclate before the
choice of electronic cutoff makes much difference. In fact, unless the
repulsive as well as attractive states near the dissociation energy are
treated carefully, there is little point in including states above the
dissociation energy (unless their fractional populations are desired for
other purposes, such as radiation calculations).

- In the present work, thermodynamic calculations were made for the
diatomic molecules N,, N;, NO, NO, 0;, ©,, Oy, and CO, which
make a significant contribution either to the thermodynamic properties

or to the charged-particle concentration of equiiibrium air. These

calculations included all the known and predicted bound states up to the
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lowest digsociation limit, and in some cases one or two states above .
this limit. The method used was to sum over the energy level up to half

the dissociation energy of each state, where the levels were calculated

e

using the spectroscopic data given in Table 86 of the aupplementary
volume. (The higher rotational constants D, and H , for which ;
data are sparse, ware calculated from the vibrational constants using |
Zormulas given in Herzberg (1950).) Levels above half the dissociation
energy wers included by means of the classical integral, Eq. (1.4-3),
using the potential curves of Figs. 1-3 to 1-5, and of Krupenie and
Weissman (1965) for CO. '
The results are presented in Chapter 2. Up to 6000°K they
generally agree very well with those of previous workers (Gilmore,
1955; Beckett and Haar (1957); JANAF Thermochemical Panel
(1960); Yungman et al., 1961; Gurvich et al., 1962; Bristow and
McChesney, 1965) except for small differences due to ﬁse of more recent
values for the gas constant R and the second-radiation constant cy= he/k
Above 6000°K, however, the present values for most molecules begin to
diverge from the older values, usually in the positive direction due to
inclusion of more electronic states in the present calculation than in any
previous calculation, except that of Bristow and McChesney (1965). At
still higher temperatures, around 15,000 or 20,000°K, the present values
cross over and fall below the few previous values available, because
previcus investigators effectively included some levels above the dis-

sociation limit of each state.
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1.5 Ideal-gas proparties for polyatomic gases .

The only polyatomic molecules which contributa as much as 0.01
per cent to the equilibrium thermodynamic properties of dry air are COz
and NO, . In addition, the negative ion NO, can affect the slectron
concentration and hence the radio-wave absorption of high density air
at a few thousand degrees, so it is desirable to include it in the
equilibrium calculation,

The ideal-gas properties of polyatomic molecules can be computed
by summing over their rotational, vibrational, and electronic energy
levels in the same way as slready described for diatomic molecules.

Of course, the additional rotational and vibrational degree of freedom
of trie larger molacules produce a more complex set of energy levels.
However, since the concentrations of polyatomic molecules generally
become small above 5000 or 6000°K, the calculations can be restricted
to lower temperatures, where excited electronic states and high rotational
and vibrational levels can usually be neglected. This permits relatively
simple approximations to the ideal-gas thermodynamic properties
(Mayer and Mayer, 1940).

Results of such calculations are available in the JANAF Tables
(1960) for the polyatomic molecules of present interest except NO, .

Thermodynamic values for the latter are tabulated in a recent report by
Clifton (1966).
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Since the existing ideal-gas tables for polyatomic molecules are
fairly adequate for high-temperaturs air calculations, no further
squations or tables will be presented here.

1.6 Effects of interparticle forces on the thernicdynamic properties of air
In the ideal-gas approximation the interactions between the
molecules, atoms, ions, and elecirons in high-temperature air are
neglected, except when two or more particles are bound together and
can be treated as a single particle. This approximation is reasonable
at low air densities, but at sufficiently high densities the mean distance
between free particles becomes 30 small that such interactions can no
longer be neglected. For neutral molecules and atoms, interaction
forces are very small except at distances less than about twice the
intermolecular distance in the liquid or solid phase. The highest air
density associated with nuclear fireballs or missile flow-fields is tha®
produced by a strong shock wave at sea level, which is roughly 0.01 q;/t:m3
(about 10 times the ambient density). Since this density is about 1 per cent
of that of liquid air, one may expect that neglect of intermolecular forces
will produce errors of the order of one per cent in the thermodynamic
properties.
At temperatures so high that the air is largely ionized, conaiderably
greater errors can be made by neglecting the interactions between the
ions and electrons. This large effect is due to the long range of the
Coulomb forces between charged particles, which decrease with distance
like 1/1'2 , in contrast to the forces between neutral molecules, which

decrease like 1/:'7 for large values of r . As an example, consider
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air at 0.01 g/cm® and 70,000°K, where the major equilibrium species
are N" . C)"L , and free electrons. The ideal-gas pressure under

these condmo:;s is about 10,000 atm, while the total Coulomb force
between neighboring electrons and positive ions (at their mean distance
on opposite sides of a unit surface) is about 1000 atm. Accordingly, one
may axpect errors of the order of ten per cent in the ideal-gas approxi~
mation under these conditions. This makes it quite desirable to include
corrections for charged-particle interactions in the thermodynamic
calculations for air, as well as somewhat desirable to include neutral-
particle interactions.,

The standard method for the tharmodynamic treatment of moderately
dense gases is to write a virial expansion, where the first term is the
ideal-gas contribution and subsequent terms give the contributions from
two-particle, three-particle, etc., interactions. The virial equation
for the pressure of a gas mixture may be written (Mayer and Mayer, 1940;

Hirschfelder, Curtis, and Bird, 1954)

b .; N, RT +ij RN, (T) RT + ;;; R, R R, Gy (1) RT+.c0, (1.6-1)

i

where~ BIJ(T) ' Cijk(T) + +e. are called the second, third, etc., virial
coefficients. These coefficients can be evaluated in terms of the inter-
particle forces. If we treat the air particles as spherical so that they
have a two-particle interaction energy U“ which depends only on

their distance r , the second virial coefficient is given by (Mayer and
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Mayer, 1940; Hirschfelder, Curtis, and Bird, 1954)
B“(T) - zna./[l - exp(-Uu(r)/k'r)] tdar
o

where Q is Avogadro's number. The expressions for the higher virial
coefficients are much more complicated, but fortunately the corresponding
terms in the virial expansion can generally be neglected for ﬁtr densities
of present interest.

A virial expansion can also be written for the internal energy, similar
to Eq. (2.6-1) for the pressure, except that temparature derivatives of the
virial coefficients, TdB“/d'I' . etc., appear instead of the coefficients
themselves. Tabulations of virial coefficients for various molecules
(Hirschfelder, Curtis, and Bird, 1954; Woolley, 1962) show that, at the
high temperatures of present interest, such derivatives are typically an
order of magnitude smaller than the coefficients themselves. This is to
be expected, since the longer-range intermolecular interactions {except for
Coulomb interactions) are fairly small compared to thermal  rergies at such
temperatures, 50 that molecules behave roughly like rigid spheres, with
virial coefficients approximately independent of temperature. Accordingly,
for air densities and temperatures of present interest, it is reasonable to
neglect virial corrections to the internal energy (except for charged-particle
interactions; see Section 1.7).

The Helmholz free energy is given by

A=Ayt var);; NINJ au('r) + vee (1.6-3)

mixture
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where V is the volume of the system. The virial corrections to the
entropy and the Gibbs free energy may be obtained readily from Eqs.'
(1.6-1) and (1.6-3) with the help of the thermodynamic identities

8= (E-A)/T and F=A+pV.

In Section 1.2 the ideal-gas expression for the chemical-equilibrium
constant, in terms of partial pressures, was derived by minimiging the
Gibba free energy. For nonideal gas mixtures, however, a similar deriva-~
tion 13 not convenient because the total pressure is no longer the sum of
the individual partial pressures. The equmbrlut;n constant may be obtained
instead, by minimizing the Helmholz free energy at constant temperature
and volume. Equation (1.6-3), after substiti:tion for the ideal free energy

from Eq. (1.2-4), can be written

A/VRT -z: m1 [r"/ar -1+ In (N RT) ; “1 JBU(T) . (1.6-4)

The minimization condition that the differential vanish yields, after seme

cancellation,
= O, N N N -
0 2: [rlfar-r In(N RT) + zz: Njau] N, . (1.6-5)

For variations due to a single chemical reaction, XY < X+Y , onehas
Gﬁn.- - éﬁx- - bﬁY . while all other £SN1 vanish, so that Eq. (1.6-5)
yields

N FC,-Fo-F° - _
—nﬁxﬁy = RT exp -—M—LRT - 2$ N,(Bm'j—am-an) . (1.6-6)

The ideal-gas part of this equation agrees with Eq. (1.2-11).
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In order to apply the relations derived above to thermodynamic
calculations, numaiical values for the second virial coefficients,

B,;(T), are needed. For most common moleculas that are stable at
room temperature, values of the virial coefficienta for like molecules

(1 = j) and a few for unlike molecules (i ¥ j) have been measured over
the easily-accessible temperature range, and axtrapolated to higher
temperatures by fitting an intermolecular potential according to Eq.
(1.6~2) (Hirschfelder, Curtis, and Bird, 1954). Woolley (19€2) has
calculsted and tabulated such values for air molecules up to 15,000°K.
However, at high temperatures such extrapolations ofter glve too high
values. Better virial coefficisnts for N, and the rare gases have been
calculated by Amdur and Mason (1958), using potentials derived from
molecuiar beam scattering. In the calculation range of 1000 to 1s,ooo°x
their values for Nz range from 0 to 19 per cant lower than those of
Woolley, while their values for Ar are 10 to 23 per cent lower.

In high temperature air calculations, virial coefficients are also
needed for species such as atomic N and O , for which no measure-
ments are available. Woolley (1962) has also made estimates of these
coefficients by deducing the interatomic potentials from the corresponding
intermolecular potentials. For interactions not involving chemical bending,
suchas N-N, or O~ Ar , his results are not unreasonable. However,
betier values for the N - N2 virial coefficient may be obtained by using
the potential calculated by Meador {1960) using valence-bond theory. The
results range from 25 to 40 per cent lower than Woolley's results, over the

temperature range from 8000 to 15,000°K. It may be added that Meador's

36




potential, and the derived virial ccefficient, are probably about 4 per
cent too low, judging by a comparison of his N, - N2 potential with
the experimenta! results of Amdur, Mason, and Jordan (1957),

Nonbonding potentials, at temperatures of several thousand degrees
or more where the small van der Waals attraction is negligible, can

usually be fit by an exponential repulsion:

Ulr) = ae &

where a and ¢ are constants which depend upon the two molecules

or atoms. fhe integral in Eq. (1.6-2) can then be approximated by (Amdur
and Mason, 1958)

2n
B(T) =

. kT<<a .,

1,7

: log 1,781a
=3 [100 278
The recummended values for the constants, obtained by increasing
Meador's (1960) values by 4 per cent, are

N, - Ny: =833 eV, c=2.78 x 108 cm™1

1

N -N,: a=363eV, c=2.85x 108 em!?

.

Much less is known about the high-temperature interactions of
other air moiecules and atoms, although some theoretical calculations
involving O, . NO , and O ar: available (Meador, 1960).
However, these molecules and atoms, and even many of the minor air
species like CO and C , are approximately the same "size" as

N2 or N , and should have roughly the same high-temperature
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virial coefficients. For air above 8000°K. it is reasonable, then, to
use Egs. (1.6-8).and (1.6-9a) for all neutral molecule~-molecule 1nter-~
actions, and Eqs. (1.6-8) and (1.6-9b) for all neutral atom-molecule
interactions.

Virial coefficients for interactions between neutral and charged
particles, on the other hand, are generally much smaller (Woolley,
1960) because the polarization attraction counteracts the core repulsion.
For present purposes it seems adequate to set them equal to zero.
Coulomb interactions between charged particles will be considered
later, in Section 1.7,

Interactions involiving chemical bonding, such as the important '
N-N , N- O, and O -0 Interactions, cannot be adequately
treated by considering only a single interaction potential. Instead, as
shown in Figs. 1-3, 1-4, and 1-5, the two atoms may approach each
«.her on any of several potential nurves, depending on the relative
orientation of their electrons. The correct virial coefficient to use is
a weighted average of the values computed using the various curves,
where the proper weights are the statistical weights of the molecular
states (see Section 1.4), and contributions of those states or levels
already inciluded in the molecular partition function should be omitted
here.

The present calculations of the partition functior and thermo-
dynamic properties of diatomic molecules, described in Section 1.4,
include for all the lower eiectronic states every rotational-vibrational
leve! below the corresponding dissociation energy. For attractive

potentials, to be zonsistent, the virial integral of Eq. {1.6-2) inust then
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be replaced by one which omits contributions from bound states. The
result, after taking the weighted average over the different electronic

states n , is

2 2 / ~U /KT 2 1/2 _-E/KT
B(T) = X_”gﬂnz gn[ rdr |1 —\e ) - ﬁ (E-Un) e dEf .
u Un>0

where for simplicity the subscripts ij designating the intersdcting
atoms, and the variation of Un with 1 , are not explicitly indicated.
The last integral in Eq. (1.6-10) can also be expressed in teri .t of the

error function, as in Eq. (1.4-3).

Sample calculations for nitrogen and oxygen avoms at high tempera-

tures were carried out using Eq. (1.6-10). They gave second viral
coefficients almost an order of magnitude smaller than those involving

molecules, because negative contributions from nonbound levels in the

attractive potentials largely cancelled the positive contributicns from the

repulsive cores. Accordingly, for present purposes the atom-atom virial

corrections can be neglected.

It might be mentioned that when high-temperature diatomic partition

functions are calculated by integrating cver all portions nf the potential
curves and all energies, as done by Beckett and Haar (1957) and Bristow

and McChesney (1965), instead of catting tham off at the dissociation

energy as done in Section 1.4, the corresponding atom-atom virial correction

is already included implicitly in the molecular thermodynamics. The only

remaining contributions to the coefficient are those from any electronic

39

e kel e T e R

>



sisies not included in the diatomic integration. In principle, the

diatomic partition functions could include gl electronic states, thus
making the atom-atom virial coefficienis vanish identically, but in
practice the purely-repulsive states are usually omitted from the
molecular treatment. The corresponding second virial coefficients,
obtatined by summing Eq. (1.56-10) only ovar the repulsive states, are
somewhat larger than those obtained by using the complete sum, but
still only about half as large as the coefficients estimated by Woolley
{1960) by scaling down the molecule-molecule potentials.

1.7 Effecis of Coulomb forces on the thermodynamic properties of
fonized air

The Coulomb forces between the ions and electrons present in
high-temperature air are gufficiently different from the intermolecular
forces already considered as to require a separate treatment. When
U“(r) = constant/r , the integral in Eq. (1.6-2) is found to diverge at

r=0 when the constant is negative {i.e., for charged particles of

opposite sign), while for large r it behaves iike J. r dr and diverges

for both positive and negative Coulomb potentials. The divergance at

r=0 1is due to inclusion of bound states; it may be removed by including

only the states with energies above that of the separated particles, by use

of Eq. (1.6-10), The divergence at r=« , however, is more funda-

mental. A uniform gas of charged particles which is not elecirically neutral

(i.e., has more positive than negative charges, or vice versa) can be
shown to have a Coulomb energy per unit mass which depends upon the

size and shape of the gas volume considered, and becomes infinite as
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the volume goes to Infinity (at fixed gas density). It is not surprising,

then, that the virial coefficients for a Coulomb potential diverge. In an
ionized gas with no net charge, the infinite positive and negative virial
terms from the repuls_lve and attractive Coulomb forces, respectively,
must somehow cancel to first order, leaving only a finite remainder.

If the charged~particle density is not too high, this problem can
be treated by the Debye-Huckel theory, which determines the mean
distribution of electrons and ions around any given electron or ion, using
a linearized self-consistent-field approximation. Since the derivation
and results are available in several texts (Fowler, 1936; Fowler and
Guggenheim, 1956; Cambel, Duclos, and Anderson, 1963) they will not
be reproduced here. Qualitatively, the effect of Coulomb interactions is
to decrease the effective